Phase-field method for computationally efficient modeling of the solidification of binary alloy with magnetic field effect

نویسندگان

  • Amer Rasheed
  • Aziz Belmiloudi
چکیده

We present a new 2D phase-field model with anisotropy, applied to the dynamics and structure of free dendrite growth during solidification process of binary alloys under the action of magnetic field. The physics of solidification problem of Ni-Cu alloy such as conditions for crystal growth rate are discussed and show good qualitative agreement with numerical simulations. In order to improve the quality and properties of mixtures, the major industrial challenges lie in the possibility to control the metal structure and defects, that occur during the solidification process. It has been observed experimentally that hydrodynamic motions in liquid phase have a considerable influence on structure and dynamic behavior of developing dendrites. Moreover, it has been shown that the velocity of the melt and direction of flow can be controlled by applying magnetic field and electric current. To study the effect of magnetic field on the evolution of microstructure of dendrites, we have constructed a phase field model to simulate directional solidification and dendritic crystal growth under the action of magnetic field. The mathematical formulation for the model is composed of magnetohydrodynamic, concentration and phase-field systems which are time-dependent, non-linear and coupled systems. The modeling, the numerical procedure and details of assigning the numerical parameters are provided. The nature of the problem constrains us to use very fine meshes in some physical regions. The results demonstrate that the physics of solidification process can be simulated and captured by using our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamma Irradiation Effect on Asymmetric Giant Magnetoimpedance of Co68.15Fe4.35Si12.5B15 Amorphous Alloy

The giant magneto impedance (GMI) effect is a large variation in the electrical impedance of a magnetic conductor when subjected to a static magnetic field. The sensitivity to the direction (AGMI) and magnitude of applied  magnetic field    and also linearity levels   of this  effect are three important parameters in magnetic sensors application. A suitable annealing procedure can be used to ac...

متن کامل

The effect of bonding temperature on the microstructure and mechanical properties of 939 super alloy by transient liquid phase bonding method

In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron...

متن کامل

Experimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals

Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...

متن کامل

Numerical Modeling of Macrosegregation during the Direct-Chill Casting of an Al alloy Billet

ABSTRACT Macrosegregation has been received high attention in the solidification modeling studies. In the present work, a numerical model was developed to predict the macrosegregation during the DC Casting of an Al-4.5wt%Cu billet. The mathematical model developed in this study consists of mass, momentum, energy and species conservation equations for a two-phase mixture of liquid and solid in a...

متن کامل

The Effect of Magnetic Nanoparticles along with Magnetic Experimental Modeling for the Desalination of the Caspian Sea Water

In this study, samples were taken of coastal waters of Kiashahr port. Magnetic desalination consisted of exposing the sample to a Magnetic field and putting the water in physical contact with magnetic nanoparticles which were synthesized with the co-precipitation method. X-ray diffractometer, Fourier transform infrared spectroscopy and field-emission scanning electron microscopy were used for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010